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Cost-Effectiveness Analysis for Therapy

Sequence in Advanced Cancer:
A Microsimulation Approach with

Application to Metastatic Prostate Cancer

Elizabeth A. Handorf , J. Robert Beck , Andres Correa, Chethan Ramamurthy,

and Daniel M. Geynisman

Purpose. Patients with advanced cancer may undergo multiple lines of treatment, switching therapies as their disease
progresses. We developed a general microsimulation framework to study therapy sequence and applied it to meta-
static prostate cancer. Methods. We constructed a discrete-time state transition model to study 2 lines of therapy.
Using digitized published survival curves (progression-free survival, time to progression, and overall survival [OS]),
we inferred event types (progression or death) and estimated transition probabilities using cumulative incidence func-
tions with competing risks. We incorporated within-patient dependence over time; first-line therapy response
informed subsequent event probabilities. Parameters governing within-patient dependence calibrated the model-
based results to a target clinical trial. We applied these methods to 2 therapy sequences for metastatic prostate can-
cer, wherein both docetaxel (DCT) and abiraterone acetate (AA) are appropriate for either first- or second-line treat-
ment. We assessed costs and quality-adjusted life-years (5-y QALYs) for 2 treatment strategies: DCT ! AA versus
AA ! DCT. Results. Models assuming within-patient independence overestimated OS time, which corrected with
the calibration approach. With generic pricing, AA ! DCT dominated DCT! AA, (higher 5-y QALYs and lower
costs), consistent for all values of calibration parameters (including no correction). Model calibration increased the
difference in 5-y QALYs between treatment strategies (0.07 uncorrected v. 0.15 with base-case correction). Applying
the correction decreased the estimated difference in cost (2$5,360 uncorrected v. 2$3,066 corrected). Results were
strongly affected by the cost of AA. Under a lifetime horizon, AA ! DCT was no longer dominant but still cost-
effective (incremental cost-effectiveness ratio: $19,463). Conclusions. We demonstrate a microsimulation approach to
study the cost-effectiveness of therapy sequences for advanced prostate cancer, taking care to account for within-
patient dependence.
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Highlights

� We developed a discrete-time state transition model for studying therapy sequence in advanced cancers.
� Results are sensitive to dependence within patients.
� A calibration approach can introduce dependence across lines of therapy and closely match simulation

outcomes to target trial outcomes.

Keywords

microsimulation model, calibration, therapy sequence

Date received: December 20, 2022; accepted: August 31, 2023

Introduction

In modern oncology practice, patients with advanced
cancers often undergo multiple lines of therapies, switch-
ing treatments when their disease progresses. The clini-
cally optimal order of therapies may be unclear and is
rarely studied by prospective randomized trials, with new
treatment paradigms continuing to evolve. In many can-
cers, specific agents are medically appropriate in several
lines of treatment, which motivates the question: Which
therapies should be given, and in what order? New

therapies are often expensive and may provide only mar-
ginal improvements in survival and quality of life, mak-
ing the cost-effectiveness of different therapy sequences
highly relevant for patient and provider decision making.

Although generally understudied, the cost-effectiveness
of therapy sequences has been examined in several
advanced cancers, including BRAF wild-type melanoma,1

EGFR mutated non–small-cell lung cancer,2 HER2+
breast cancer,3,4 and KRAS wild-type colorectal cancer.5

These analyses often use state-based Markov models.1,3–5

A major limitation of this approach is the ‘‘memoryless’’
property of the Markov process; that is, the probability of
moving from one health state to another depends only on
the current state. Semi-Markov models relax this assump-
tion, but when prior health states inform future events,
such models require many additional states to encode prior
information and can become unwieldy. This has forced
previous studies of therapy sequence to make unrealistic
simplifying assumptions.

In the therapy-switching problem, several analytic
challenges make modeling complex. First, staggered start
times of later lines of therapy can lead to outcomes and
transition probabilities dependent on both state time and
total model time. Second, the probability of death is
highly dependent on prior progression events, as patients
are much more likely to die after disease progression.
Third, patients’ outcomes are dependent over time.
Patients who do not respond well to first-line therapy
and experience early progression are more likely to do
poorly in subsequent lines of treatment due to the inher-
ent aggressive biology of their cancer or other factors
such as comorbid conditions. Fourth, not all first-line
trial patients would be eligible for second-line trials, as
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some patients’ overall health would deteriorate. The
exclusion of such patients from second-line trials would
lead to an overestimate of survival for the full first-line
cohort (i.e., survivorship bias).

We propose using microsimulation models,6 which are
discrete-time state-transition models that aggregate simu-
lated individual-level trajectories.7–10 These models are
particularly useful when individual factors inform future
transition probabilities. These models require simulating
a large number of patients to ensure stability of esti-
mates, making them computationally intensive.6 Never-
theless, modern computing solutions have made these
models more practical to run.8 We use microsimulation
models to address each of the problems listed above.

This study is motivated by 2 therapy options for
metastatic prostate cancer, abiraterone acetate (AA) and
docetaxel (DCT). The cost-effectiveness of these 2 treat-
ments has been of substantial interest, for both first-line
and second-line treatment.11–13 Although AA has a bet-
ter side-effect profile, both DCT for first-line therapy fol-
lowed by AA after progression, and AA followed by
DCT, have been consistent with the standard of care.
Until very recently, AA had a list price upwards of
$10,000/month, while generic DCT has been available
years. Although generic AA is now available, the ques-
tion of therapy order is not unique to this situation. As
new, expensive agents come on the market, patients,
physicians, and payers will need to make value judg-
ments when considering not just whether to give a spe-
cific therapy but also when the therapy should be given.

Methods

Microsimulation Models for Multiple Lines of Therapy

Model framework. Because of the complex dependence
over time, we propose a discrete time state-based micro-
simulation model. Figure 1 shows the general structure
of our model. Patients start in Line 1 therapy, staying in
that state until disease progression. At progression, they
would switch therapies and move to the Line 2 state.
After progression on Line 2 therapy, the patient would
move into the Extensive Disease state, a condition
wherein patients have poor quality of life and require
expensive care. In this state, patients may receive anti-
cancer therapy or supportive therapy, depending on the
cancer. Patients could also move directly from Line 1 to
Extensive Disease; the proportion of patients who do not
go on to receive Line 2 therapy would depend on disease
characteristics. In prostate cancer, in which patients are
generally healthy after first-line treatment, few patients
would go directly to Extensive Disease, but in a more

aggressive disease like pancreatic cancer, this probability
would be much higher. Patients can move from any state
to Death, an absorbing endpoint.

Estimation of transition probabilities. Many cost-
effectiveness studies use published survival curves from
clinical trials to inform model transition probabilities.
To obtain the correct transition probabilities for this
model, one must take into account the dependence of
progression and death. Overall survival (OS) curves from
clinical trials of first-line therapy cannot be used directly
to estimate probabilities of death, as doing so would
result in too many individuals dying prior to cancer pro-
gression. We propose to use a competing risks frame-
work to estimate transition probabilities.14 That is, we
will estimate the cumulative incidence function of pro-
gression accounting for the competing risk of death.

We abstract data from published studies using com-
mercial software to digitize survival curves, which pro-
duces a data set defining the survival step function
(probabilities and times). Then, the method proposed by
Guyot et al15 allows us to combine the digitized curves
with published numbers at risk to infer the underlying
event and censoring times. Briefly, this algorithm uses an
iterative process to determine the number of censoring
events that occur in each interval defined by a risk table
corresponding the Kaplan-Meier curves. It first assumes
censoring occurs uniformly across each interval and
adjusts the number of censoring events until the inferred
individual data and published data match. This method
has been shown to successfully re-create survival statis-
tics corresponding to published Kaplan-Meier curves.
After we apply this algorithm to the progression-free sur-
vival (PFS) and OS curves, we have vectors of times (T)
and censoring indicators (d): TOS and dOS for OS and TP

and dP for PFS. For the censoring indicators, 1 indicates
that an event occurred, and 0 indicates that the observa-
tion was censored.

Death is considered an event when estimating PFS.
We propose an algorithm to determine which events
should be classified as deaths versus progressions. One

Figure 1 General model structure for 2 lines of therapy.
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can look for close matches between death event times
(abstracted from the OS curve) and progression/death
event times (abstracted from the PFS curve). PFS events
that occur at the same time as deaths (within some mar-
gin of error) are assumed to be deaths. We can therefore
obtain a vector of event type indicators (dCR) for use in a
competing risks model. We code dCR such that 0 denotes
a censored observation, 1 denotes progression, and 2
denotes death.

Formally, we initially set dCR = dP and TCR = TP.

8 TOSi
jdOSi

= 1f g;
Let Ai = jjTCRj

2 TOSi
� e, TOSi

+ e½ � & dCRj = 1
� �
set dCRa1

= 2 if Aij j.0:

where e is the allowable margin of error. More intui-
tively, this algorithm initially sets the vector of event type
indicators as the vector of PFS censoring indicators. For
each death event, it looks for progression events within
some acceptable margin. If 1 or more progression event
meets this criteria (if events are close in time or tied), it sets
the first of them to be a death event. Note that not all
death events will have a corresponding time in the PFS
curve, as most patients progress before death. After one
has obtained an inferred data set with event times and
event types, cumulative incidence curves can be estimated
using standard methods for competing risks.16 Some stud-
ies report progression differently, considering patients who
die to be censored instead of failed. The resulting survival
functions can be termed time to progression (TTP). We
henceforth refer to PFS when including death as an event
and TTP when deaths are censored. A similar process to
that described above can be used to infer dCR if the trial
reports TTP, by looking for close matches between death
events and censoring times in the TTP data set.

The performance operating characteristics of this
approach are difficult to quantify in the general case, as
they depend on many factors including the distribution
of survival/progression times, the resolution of the pub-
lished figures, the skill of the abstractor at manually
selecting points on the survival curve using the DigitizeIt
software, and the number of samples. Generally, the
fewer events present on the curves, and the higher the
resolution of the image, the easier it should be to match
steps on the PFS/TTP and OS curves. Therefore, in lieu
of a formal assessment, we performed a proof-of-concept
analysis that uses a public data set containing death and
progression times of cancer patients. See Appendix B.

Model calibration. For second-line treatment and
beyond, trial results may be too optimistic for the full

cohort of patients. We assume that our study sample is
trial eligible at the time of first-line treatment; however,
some patients will have deteriorated health at the time of
progression and may not meet all inclusion criteria for
the second-line trials. The second-line trial results there-
fore may not be fully generalizable to our cohort, as the
studies would tend to exclude sicker patients. Note that
we assume that most patients will still be treatable with
second-line therapy; this assumption is a variation on a
well-known phenomenon that clinical trial populations
differ systematically from populations treated in clinical
practice.17,18 Patients with more aggressive disease will
tend to have worse response and shorter TTP in all lines
of therapy.19 This can result in a substantial overestimate
of OS for the cohort. We propose a calibration approach
that simultaneously addresses both of these issues.

We can increase the event probabilities in Line 2 and
Extensive Disease states when time in first line (T1) is
short by applying a hazard ratio (HR) to the survival
curves, where the HR is some nonincreasing function of
T1. The function defining the HR is denoted as G(T1).

This will result in a correlation between the time spent
in Line 1 and Line 2 states. Further, if G(t) . 1 for all or
most values of T1, then it can correct the overestimate of
survival outcomes for later lines of therapy. One simple
and easy-to-interpret functional form is a linear decrease
in G(t) from some maximum HR (u) to a HR of 1 at
some maximum time (v).

G(T1i)=
u� (u�1)

v
T1i T1i\v

1 T1i � v

�

where T1i = time spent by subject i in Line 1 before first
disease progression, u = largest HR applied to any sub-
ject, and v = smallest time spent in Line 1 for which no
penalty will be applied for later lines of therapy.

We propose using a bounded Nelder-Mead algorithm
to choose parameters (e.g., u and v) that best calibrate
the OS curve to the trial data. This is a simplex method
that uses gradient descent to find parameters that mini-
mize the objective function.20,21 Nelder-Mead is particu-
larly useful here because it does not require a fully
defined parametric function and can optimize multiple
parameters in a constrained parameter space. We pro-
pose minimizing the sum of squared error (SSE) between
the microsimulation model-based OS curve, Smod(t), and
the target OS curve from the relevant trial, Stgt(t). As we
use a discrete time model, a natural choice is to calculate
the SSE based on the difference between the 2 survival
curves at the start of each cycle. We use the following
cost function:
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F u,vjT1ð Þ=
XC

c= 1

Smod t= cju,v,T1ð Þ � Stgt t= cð Þ
� �2

where C is the total number of cycles and T1 is the vector
of times on Line 1. We then find

arg min
u,v

F u,vjT1ð Þ subject to u 2 1,‘½ Þ, v 2 1,‘½ Þ

We can also use bounds to restrict the range of the
final parameter estimates to clinically plausible values.
The optimization should be repeated with different start-
ing values to ensure local optima are not selected and
with many randomization seeds as Smod t = cju,v,T1ð Þ
will vary stochastically. After identifying the best values,
the resulting model-based survival curves can be tested
for lack of fit against the target survival curves using the
Komolgorov-Smirnov test. In this analysis, we applied
the same adjustment (identical parameters) to both the
Line 2 and Extensive Disease states. A more flexible
adjustment, if needed, could allow for different adjust-
ments for the 2 different states.

Prostate Cancer Application

Background. These modeling methods were motivated
by a study of metastatic hormone-sensitive prostate can-
cer (mHSPC). This refers to de novo metastatic prostate
cancer (patients initially diagnosed with M1 disease) or
disease refractory to local treatment not previously
treated with hormonal therapy. For decades, the
accepted first-line treatment for mHSPC was androgen
deprivation therapy (ADT) alone. After first progres-
sion, patients are said to have metastatic castrate-
resistant prostate cancer (mCRPC), and other agents
would be added to ADT. Docetaxel (DCT) is a cytotoxic
chemotherapy which has long been a standard therapy
for mCRPC. Aberaterone acetate (AA) is a next-
generation androgen receptor signaling inhibitor that has
been approved in mCRPC since 2011 and has a better
safety profile than cytotoxic chemotherapies.22 Starting
in 2015, 2 seminal phase III trials changed the treatment
paradigm for mHSPC. The CHAARTED trial demon-
strated a TTP and OS benefit for DCT + ADT versus
ADT alone.23 Next, in 2017, the LATITUDE trial
demonstrated PFS and OS benefits for AA + ADT ver-
sus ADT alone.22 These trials were selected due to the
similarity of their inclusion criteria; nevertheless, some
differences were present in the patient populations (see
Appendix Table A1).

First-line docetaxel and abiraterone in mHSPC
patients have never been compared head-to-head.

Meta-analyses demonstrate a potential PFS benefit for
AA, but the OS between the 2 treatments is largely simi-
lar.24 According the National Comprehensive Cancer
Network guidelines (version 3.2022),25 either AA +
ADT or DCT + ADT are considered category 1 treat-
ments (i.e., those with the strongest level of evidence) for
mHSPC. In addition, in patients who progress after
either treatment, switching to the other is clinically
appropriate. Therefore, treatment sequences of either
AA followed by DCT (AA!DCT) or DCT followed by
AA (DC!TAA) are appropriate according to consensus
guidelines (for simplicity, we drop ‘‘+ADT’’ going for-
ward, but note that all patients will continue to receive
ADT in addition to other therapies). In this case where
OS outcomes are expected to be similar, the cost-
effectiveness of either treatment strategy is of interest for
payers, patients, and policy makers. We use this clinical
example to illustrate our microsimulation methods.

Model structure and inputs. Figure 2 shows the prostate
cancer model, adapted from the model in Figure 1.
Adverse events may occur after either Line 1 or Line 2
therapy. Patients may stop active treatment without yet
experiencing disease progression; this is part of the
planned course of treatment for DCT (6 cycles on Line
1, 10 cycles on Line 2). Although AA should ideally be
taken until disease progression, some patients may stop
early (as was seen in the trial). Patients off therapy but
without disease progression are in the Post-Line1 or
Post-Line 2 state.

Transition probabilities between Line 1, Line 2, and
Extensive Disease were defined using the methods
described above. Survival times were first extracted from
digitized survival curves from relevant clinical trials
(CHAARTED, LATITUDE, MANSAIL, and COU-
AA-302).22,23,26,27 Calibration parameters were then
determined, and the adjusted survival curves defined the
transition probabilities. Probability of death from Exten-
sive Disease was based on the PROSILECA trial (which
enrolled heavily pretreated patients),28 and these prob-
abilities were also adjusted using the calibration correc-
tion. DigitizeIt software (DigitizeIt version 2.0,
Braunschweig Germany) was used to numerically define
the survival curves. We assumed a low, fixed (10%)
probability of transitioning directly from Line 1 to
Extensive Disease based on clinical expertise, due to the
relatively healthy population at baseline and the typical
course of this disease.

Other model inputs were similar to prior studies of
first-line treatment of mHSPC.11 Selected model inputs
are shown in Table 1, with all model specifications listed
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in the Supplementary Material. We included adverse
events that were relatively common and likely to substan-
tially affect cost and/or quality of life. These included
grade 3+ fatigue and neutropenia with and without
fever. The probabilities of these events were taken from
the respective clinical trials.22,23,26,27 We assumed that
afebrile neutropenia was treated with filgrastim, whereas
febrile neutropenia required hospitalization.

Our model included costs of medications, medication
administration, physician office visits, and hospitaliza-
tions. Medication costs were obtained from retail phar-
macies29 or by average wholesale prices, adjusted to

reflect anticipated discounting.30,34 Costs of medication
administration and office visits were taken from the Cen-
ters for Medicare and Medicaid Services physician fee
schedule.35 The expense of treating patients in the Exten-
sive Disease state was estimated using results of a prior
cost-effectiveness study of third-line treatments for meta-
static prostate cancer (cabazitaxel after treatment with
docetaxel and androgen inhibitor).36 Costs of hospitali-
zation for febrile neutropenia were taken from prior lit-
erature.31 All costs were calculated in 2021 dollars.37

Quality-of-life adjustments were made via utilities.
These were taken from the relevant literature.33,34,38,39

Table 1 Selected Model Inputs Other Than Calibrated State Transitions

Costs (per 3 Week Cycle) Value Reference

AA: 2021 branded $2,396 Amazon29

AA: 2021 generic $296 Amazon29

AA: on patent $6,560 AccessPharmacy30

DCT $2,388 AccessPharmacy30

Treatment of febrile neutropenia $19,675 Lyman et al.31

Utility Values Value Reference

L1 SD on AA 0.83 Chi et al.32

L1 SD on DCT 0.78 Morgans et al.33

L2 SD on AA 0.725 Zhong et al.,34 Chi et al.32

L2 SD on DCT 0.675 Zhong et al.,34 Chi et al.32

Extensive disease 0.62 Zhong et al.34

Adverse Event Probabilities Value Reference

L1 Fatigue (AA) 0.02 Fizazi et al.26

L1 Neutropenia (DCT) 0.12 Sweeney et al.23

L1 Febrile Neutropenia (DCT) 0.061 Sweeney et al.23

AA, abiraterone acetate; DCT, docetaxel; SD, stable disease.

Figure 2 States and allowable transitions in prostate cancer model.
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Where possible, we used quality-of-life data from the
clinical trials of interest.32 Utilities were lower when on
treatment with DCT than when on treatment with AA.
We assumed that half of the patients on line 2 therapy
would have symptomatic disease (e.g., bone metastasis or
other symptoms that reduce quality of life). We assumed
that all patients in the Extensive Disease state would have
cancer symptoms and a poorer quality of life. We used a
5-y time horizon, as this was the longest follow-up sup-
ported by trial data, with results reported as 5-y restricted
quality-adjusted life-years (5-y for consistency QALYs).
In a lifetime scenario, we use a 25-y horizon. Transition
probabilities for the lifetime model after 5 y were based
on parametric extrapolations of the trial survival curves
and the probability of death from the Social Security
Administration 2019 actuarial life tables for men.40 Cost
and effect outcomes were discounted at 3% per year.
This model used a payer perspective in the United States
of America. Cycle length was 3 wk (based on DCT treat-
ment schedule).

Software. All analyses were performed using R software
version 3.6. The code framework for the microsimulation
model was adapted from Krijkamp et al.8 Software to
infer the survival times was published by Guyot et al.15

Cumulative incidence functions were fit using the R
package cmprsk.41 Nelder-Mead optimization was per-
formed using the package neldermead.42 Our code to run
this model is available in the Appendix and in our github
repository https://github.com/BethHandorf/CEA_therapy_
switching.

Human subjects and funding. This study included only
summary data from published sources; no patient-level
data were incorporated the model. This work was funded
in part by grants from the National Cancer Institute. The
funding agency had no role in this study.

Results

We present the results of our microsimulation approach
in the context of our prostate cancer application. First,
we used the method described in section 2.1.2 to sepa-
rately identify progression and death events. For Line 1
DCT, there were a total of 397 observations. Of these
181 were progression events. For this study, death was
censored in the calculation of the TTP curves. Our
method recategorized 38 of the 216 censored observa-
tions as deaths while on Line 1 therapy (9.6% identified
as death events). For Line 1 AA, there were a total of
597 observations, and 83 of the 247 progression events

were recategorized as deaths (for this trial, death was
considered an event). Overall, 13.9% of AA progression
events were recategorized. When analyzing line 2 PFS
curves, 45/526 (8.6%) DCT observations were categor-
ized as deaths, and 60/564 (10.6%) AA observations
were categorized as deaths. We note that in our proof-
of-concept analysis using a data set with known out-
comes, the algorithm underestimated the proportion of
death events (see Appendix B), which may have occurred
here as well. Nevertheless, the proportion of death events
here seems reasonable, as most prostate cancer patients
die after their cancer has progressed substantially (i.e.,
Extensive Disease state).

Our optimization approach identified (u,v) =
(2.21,87) as the best calibration parameters for Line 1
DCT and (5.07,36) for Line 1 AA. This indicates that
the DCT survival curve best matches the trial data with
a modest to small HR applied to Line 2 and Extensive
Disease states and at least some small survival penalty
applied to all patients in the simulation (87 total cycles).
Contrary to this, for AA, a very large HR is applied to
subjects with short times on Line 1 therapy, but no addi-
tional hazards are applied to patients who are
progression-free on Line 1 therapy for greater than 36
cycles (2.1 y). The results of applying these calibration
parameters are shown in Figure 3 and Table 2. With no
calibration, the model substantially overestimates sur-
vival, but the calibration approach greatly improves fit.
Interestingly, both sets of optimal parameters resulted in
a nonsignificant test for lack of fit for both DCT and
AA OS curves. Because of this, and because of the longer
follow-up from the DCT trial, in our clinical example,
we used the DCT optimal parameters as our base case.
Although this may introduce some bias from residual
lack of fit, we chose to prioritize reducing the risk of
overfitting the model.

Next, we evaluated the cost-effectiveness of the 2
treatment strategies. We assessed how estimates changed
when we varied the calibration parameters. We calcu-
lated outcomes using 1) the optimal DCT parameters, 2)
the optimal AA parameters, and 3) the optimal para-
meters applied to each respective treatment. We com-
pared these results to those of no correction. The results
of the models are shown in Table 3A. We see that the
uncalibrated model gives the highest estimates for both
costs and 5-y QALYs for both treatment strategies. The
difference in 5-y QALYs was the smallest for the uncali-
brated model and was larger after corrections, particu-
larly when applying the same correction to both
strategies. Although costs were lower in the calibrated
models, the difference in costs varied. When applying the
optimal AA correction, the 2 treatment strategies had
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very similar costs, while the largest difference was found
when applying different optimal corrections to the
respective treatment strategies.

In additional scenarios, we varied the cost of AA, as
it has recently become available as a generic, and prior

analyses showed that the cost-effectiveness of first-line
AA was highly dependent on AA cost.11 Table 3B shows
the results of these models, using the optimal calibration
parameters for DCT. (As discussed above, we chose to
use the optimal DCT parameters for analyses when

Figure 3 Calibration of model-based curves to trial-based overall survival. (A) No calibration. (B) Optimal calibration
parameters for docetaxel. (C) Optimal calibration parameters for abiraterone acetate.
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varying AA cost.) We see that, consistent with other
studies, the on-patent pricing results in the AA!DCT
strategy being not cost-effective, with an ICER . $1.5
million/5-y QALY. Using current brand name pricing,
AA!DCT is still not cost-effective; however, with gen-
eric pricing, this strategy becomes cost-saving and domi-
nates the DCT!AA strategy. Finally, we extended the
model to a lifetime horizon, using the DCT optimal cali-
bration parameters and the generic AA cost. In the main
model, approximately half of the cohort was alive at the

end of follow-up, so consideration of a lifetime horizon
is warranted. Here, AA!DCT was no longer the domi-
nant strategy, as costs were slightly increased; however,
it was still highly cost-effective, with an ICER of
$19,463/QALY (see Table 3C).

Discussion

We have developed a microsimulation strategy to model
treatment sequence across multiple lines of therapy. Our

Table 3 Cost-Effectiveness Model Results

A. Effect of Varying Calibration Parameters on Model Results (AA-Generic Cost)

Calibration Parameter Strategy Cost 5-y QALY D Cost D 5-y QALY ICER

No correction DCT first $132,144 2.96
(u,v) = (1,1) AA first $126,784 3.03 2$5,360 0.07 Dominant
DCT optimal DCT first $119,458 2.72
(u,v) = (2.21,87) AA first $116,392 2.87 2$3,066 0.15 Dominant
AA optimal
(u,v) = (5.07,36)

DCT first $112,393 2.63
AA first $111,577 2.82 2$816 0.19 Dominant

AA: (u,v) = (2.21,87)
DCT: (u,v) = (5.07,36)

DCT first $119,458 2.72
AA first $111,577 2.82 2$7,881 0.10 Dominant

B. Effect of Varying AA Cost on Model Results (DCT Optimal Calibration (u,v) = (2.21,87))

AA Cost Strategy Cost 5-y QALY D Cost D 5-y QALY ICER

Generic (2021) DCT first $119,458 2.72
AA first $116,392 2.87 2$3,066 0.15 Dominant

Branded (2021) DCT first $136,849 2.72 NA NA NA
AA first $211,615 2.87 $74,766 0.15 $512,794

On-patent DCT first $171,330 2.72 NA NA NA
AA first $400,412 2.87 $229,082 0.15 $1,571,189

C. Effect of Extending Model to Lifetime Horizon (DCT Optimal Calibration (u,v) = (2.21,87))

AA Cost Strategy Cost QALY D Cost D QALY ICER

Generic (2021) DCT first $190,698 4.57
AA first $199,980 5.05 $9,282 0.48 $19,463

AA, abiraterone acetate; DCT, docetaxel; ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life-year.

Table 2 Fit of Model-Based Results with Various Calibration Parameters

Strategy Treating with DCT First Strategy Treating with AA First

3-y OS 5-y OS p-vala 3-y OS 5-y OS p-val
a

Trial data 0.697 0.443 0.658 Not available
No calibration 0.789 0.613 0.00051 0.776 0.595 0.0023
DCT optimal parameter 0.681 0.487 0.86 0.696 0.509 0.80
AA optimal parameter 0.630 0.495 0.29 0.664 0.531 0.99

AA, abiraterone acetate; DCT, docetaxel; OS, overall survival.
ap-val testing the model-based results to the true trial results using the Komolgorov-Smirnov test for lack of fit.
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method allows for event probabilities to be correlated
within patients across study states and can calibrate
model-based results to those of target trials. We believe
that our model could be adapted to many studies of
treatment sequence, although subsequent validation is
necessary. Multiple lines of therapy are very common in
advanced cancers, but our work could potentially be
extended to apply to other progressive diseases, such as
chronic infections, rheumatic disease, or cardiovascular
diseases.

When we first looked at our clinical example of meta-
static prostate cancer, we tried to avoid incorporating
dependence within patients by using the OS curves
directly to define probabilities of death. However, this
led to 32% of patients dying while on Line 1 therapy,
which is clinically unrealistic in this relatively healthy
population.

Using the competing risks framework solved this
problem but led to calibration issues. One alternative
approach we tried was to increase the probability that
patients would move directly from Line 1 to Extensive
Disease; however, we could not calibrate results unless
an unrealistically high proportion of patients forego
second-line treatment. Although this is a metastatic can-
cer population, prostate cancer is still relatively indolent,
and patients may survive for years with their disease. We
therefore kept the proportion of patients who forgo Line 2
treatment as low and fixed (10%). Instead, our calibration
approach recognizes that patients with poor outcomes on
Line 1 therapy are more likely to have worse responses to
other therapies, due to the underlying nature of their dis-
ease. Our approach, using competing risks estimates with
recalibrated transition probabilities, enabled us to create a
model with higher fidelity to real patient experiences.

Our proposed methods have several limitations. One
drawback of the microsimulation approach in general is
its use of discrete time to approximate an underlying
continuous process. This can be problematic for several
reasons, as discussed by Graves et al.43 They recommend
using discrete event simulation models with continuous
time as an alternative. Adapting our framework to a
DES model is an important area for future research.
However, we note that the ability of the microsimulation
model to closely match OS results from relevant trials
demonstrates its utility in our clinical scenario.

Our calibration method assumes that the second-line
trial data may not be fully generalizable to our microsi-
mulation cohort and that patients’ outcomes on different
lines of therapy are correlated. Data justifying these
assumptions are limited, which is a weakness of our
approach. Our calibration approach used a simple func-
tional form for the correction. The linear correction is

unlikely to be exactly correct; however, it is simple to
estimate and interpret. Other functional forms could be
considered, and any monotonic decreasing function of
the HR would result in a positive correlation between
time spent on Line 1 and Line 2 therapies. One could
consider a flexible spline-based approach; however, cau-
tion would be needed to avoid model overfitting. In
addition, each iteration is time-consuming to fit, so mod-
els with more than 2 parameters may become computa-
tionally burdensome. In our clinical example, the linear
correction was sufficient to provide good calibration,
although there was some residual lack of fit (specifically,
OS was still overestimated in the first 3 y for DCT). It is
possible that allowing different probabilities for the tran-
sition directly from Line 1 to Extensive Disease could
have improved fit; however, we chose to keep this prob-
ability consistent across arms due to a lack of direct
information on these parameters.

A limitation of combining data from multiple clinical
trials is that the patient populations may differ. Here, the
mHSPC DCT patients were younger, had higher Gleason
scores, and were less heavily pretreated than patients in
the mHSPC AA trial. This could bias survival outcomes
in either direction; however, the differences were clini-
cally minor and are not expected to substantially alter
long-term outcomes. Using secondary data, in which we
do not have actual patient progression and death times,
is also a weakness of this analysis. Although our algo-
rithm has face validity, we did find in a proof-of-concept
analysis that it cannot perfectly reconstruct individual
patient data. This should motivate increased sharing of
de-identified individual patient data and use of electronic
health record–derived data sets to increase the fidelity of
survival estimates. Nevertheless, if no such data are avail-
able, our method is a reasonable alternative for modelers
to consider.

As the focus of this manuscript is methods develop-
ment, we did not perform a full sensitivity analysis to
vary each parameter used in the illustrative cost-
effectiveness example. Instead, we limited the sensitivity
analysis to the most pertinent parameters: those used in
the calibration. To address second-order uncertainty for
the calibration parameters, one could consider uncer-
tainty analyses using a bootstrap or a Bayesian calibra-
tion approach. This is an important area for future
studies. As the price of AA has recently changed sub-
stantially, we varied its cost in this article. A full cost-
effectiveness analysis of modern treatments for mHSPC
is of interest for future studies, as the treatment para-
digms for this disease continue to evolve.44,45

In our clinical example, we show how a lack of cali-
bration can alter model estimates, in this case, by
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underestimating the benefit of AA!DCT over
DC!TAA (0.07 5-y QALYs without calibration v. 0.10
to 0.19 5-y QALYS with calibration). We also showed
that under on-patent pricing, the AA!DCT strategy is
generally not cost-effective. These results are consistent
with prior studies of line 1 therapy (where AA is found
to not be cost-effective),11,12 although we note that here
we are testing the full planned treatment strategy, not
just first-line treatment. These results changed dramati-
cally with generic AA, where the AA!DCT strategy
dominates DCT!AA, being both more effective and less
costly. Here we used AA prices from 1 retail pharmacy;
future research should obtain more comprehensive esti-
mates. The average wholesale price of generic AA ranges
from $510 to $11,665 per month,30 indicating substantial
variability in costs. In our scenario analysis with a life-
time horizon, AA!DCT was no longer dominant but
still highly cost effective, with an ICER of $19,463/
QALY. This difference was attributable to durable
responses to first-line AA, with 35% of patients in our
model continuing on treatment for more than 5 y.

In the future, we plan to use this model to assess novel
frontline options in prostate cancer such as triplet ther-
apy (AA + DCT + ADT v. darolutamide + DCT +
ADT), which has emerged in recent months. We will
also extend this model by incorporating patient-level
information derived from electronic health records. Mod-
els informed by actual patient outcomes on sequences of
therapies will better capture dependence structures across
lines of therapy.
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